Molecular Structures of Propylene Oxide and Epichlorohydrin by Electron Diffraction

By Masato Igarashi

(Received August 6, 1954)

In the previous report¹⁾, it was stated that the molecular structure of ethylene oxide was reinvestigated by electron diffraction and the results coincided better with those of the microwave investigation²⁾ than those of the early electron diffraction study³⁾.

In the present paper electron diffraction studies about the structures of propylene oxide and epichlorohydrin are reported.

Propylene oxide and epichlorohydrin have a ring of ethylene oxide and the chief aim of these studies is to know the configuration of $-CH_3$ in propylene oxide and $-CH_2Cl$ in epichlorohydrin with respect to the ring.

Procedure

Propylene oxide was prepared from lime and propylenechlorohydrin which had been obtained from propyleneglycol and hydrogen chloride gas (b. p. 35-36°C). Epichlorohydrin was purified by distillation of the commercial product (b. p. 115°C).

Electron diffraction photographs were prepared by the apparatus described in the previous report¹⁾; the camera distance at that time was about 9 and 10 cm., and the wave length of the electron beam was about 0.055 Å. Visual intensity curves V_1 (propylene oxide) and V_2 (epichlorohydrin) were drawn from measurements of the photographs (Figs. 1 and 2). The q values of maxima and minima are shown in Tables III and IV.

TABLE I
STRUCTURE OF ETHYLENE OXIDE BY
MICROWAVE INVESTIGATION²⁾

M ICE	TOWAVE IN	VESTIGATION-	
C-C	1.472Å	c-o	1.436Å
C-H	1.082Å		
∠H-C-H	116°41'	$\angle H_2 - C - C$	159°25'

¹⁾ M. Igarashi, This Bulletin, 26, 330 (1953).

TABLE II

MODELS FOR PROPYLENE OXIDE (A, B, C, D)

Model	$C_2 - C_3$	Angle between C_2-C_3 and C_1C_2O plane	Configuration of Cl atom in epichlorohydrin
\mathbf{A}	1.54	58°	
В	1.50	58°	
С	1.54	50°	
D	1.54	65°	
\mathbf{E}	1.54	58°	trans against
\mathbf{F}	1.50	58°	the midpoint
G	1.54	50°	of C ₁ -O
H	1.54	65°)
I	1.54	58°	cis against the
			midpoint of $C_1 - O$
	1.54	58°	trans against
J	1.34	56	C ₁
		500	•
K	1.54	58°	trans against
			О

Triangle C_1C_2O , C_1-H and C_2-H are equal to those of ethylene oxide (Table I). $C_3-H=1.09\text{\AA}$, $C_3-C_1=1.76\text{\AA}$. Angles in $-CH_3$ and $-CH_2C_1$ are all equal to tetrahedral angle.

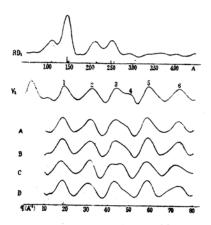


Fig. 1. Propylene oxide

G.L. Cunningham, A.W. Boyd, R.J. Myer, W.D. Gwinn and W.I. Le Van, J. Chem. Phys., 19,676 (1951).
 P.C. Ackermann and J.E. Mayer, J. Chem. Phys., 4, 377 (1936).

AND EPICHLOROHYDRIN (E, F, G, H, I, J, K)

Angle between Configuration of Cl atom in

TABLE III
PROPYLENE OXIDE

	Min.	$q_{ m obs}$	$q_{ m calc}/q_{ m obs}$			
Max.			$\widehat{\mathbf{A}}$	В	C	D
1		18.3	0.983	0.988	0.972	1.004
	2	25.05	0.943	0.947	1.003	0.947
2		31.45	0.982	0.992	0.982	0.970
	3	37.25	0.988	1.001	0.974	1.001
3		42.1	1.014	1.016	0.998	1.012
	4	45.85	(0.992)	(1.012)	(0.949)	(1.025)
4		49.4	(0.042)	(1.042)	(0.929)	(0.982)
	5	52.4	0.992	0.998	0.982	1.001
5		57.8	1.000	1.007	1.000	1.000
	6	65.4	1.025	0.987	1.006	0.983
6		72.2	1.004	1.007	0.991	1.015
	7	78.75	0.992	0.977	1.013	1.001
7		(84.0)				
Average,	10 features		0.994	0.994	0.991	0.994
Average			0.015	0.012	0.012	0.017

TABLE IV EPICHLOROHYDRIN

Max.	3.61		$q_{ m calc}/q_{ m obs}$			
	Min.	$q_{ m obs}$	É	F	G	H
1		11.9	(0.908)	(0.950)	(0.908)	(0.915)
	2	14.45	(0.920)	(0.920)	(0.906)	(0.934)
2		17.1	0.977	0.954	0.971	0.983
	3	20.05	1.006	(1.021)	1.001	1.011
3		21.3	0.994	(1.008)	1.008	1.008
	4	23.25	1.002	1.006	0.998	1.024
4		26.25	1.002	1.006	0.998	1.014
	5	29.05	0.992	0.999	0.978	1.024
5		31.9	0.991	0.998	0.982	0.994
	6	34.7	0.994	1.008	0.988	1.000
6		37.05	1.007	1.001	1.001	1.001
7	7	39.35	0.973	0.986	0.970	1.001
7		41.6	0.993	1.003	0.979	1.017
	8	44.0	0.991	0.998	0.984	1.000
. 8		46.95	0.991	1.003	0.986	0.995
	9	49.65	0.984	(1.016)	0.982	1.013
9		51.05	1.005	(1.019)	0.999	1.027
	10	53.2	1.004	(1.006)	0.996	1.021
10		56.8	1.011	1.014	0.998	1.026
	11	58.95	0.997	1.011	0.984	(1.017)
11		60.8	0.995	0.998	0.998	1.003
	12	64.7	0.998	1.003	0.998	1.003
12		70.0	1.023	1.024	1.011	
	13.	77.25	1.019	1.022	1.020	
13		(82.25)				
Average			0.998	1.002	0.992	1.008
_	deviation		0.009	0.009	0.010	0.010
, .	Values	in Gothics we	re doubly weigh	nted in computing	ng averages.	

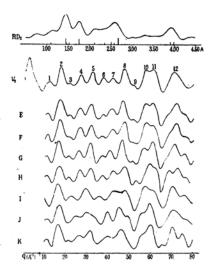
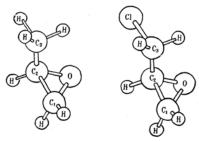



Fig. 2. Epichlorohydrin

Propylene oxide Epichlorohydrin
Fig. 3. Perspective picture of propylene
oxide and epichlorohydrin molecules.

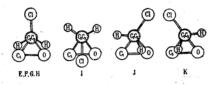


Fig. 4. Various configurations of epichlorohydrin.

H-atoms of C_1H and C_2H are omitted for convenience.

Analysis and Results

From the visual intensity curves V_1 and V_2 , radial distribution curves RD_1 (propylene oxide) and RD_2 (epichlorohydrin) were drawn by using the formula,

$$rD(r) = \sum_{q=1,2,\dots}^{q=80} V(q) \exp(-aq^2) \sin(\pi q r/10)$$

where $q=10s/\pi=(40/\lambda)\sin\phi/2$, ϕ the scattering angle, and a was determined such that $\exp(-aq^2)=0.1$ at q=80.

In RD₁ main peaks are at 1.10, 1.44, 2.11, 2.51 and 2.92 Å, which seem to correspond to the distances C-H, $(C_1-C_2, C-O, C_2-C_3)$, $(C_1 \cdots H, O \cdots H)$, $(C_1 \cdots C_3, C_3 \cdots O)$

and long range (C \cdots H, O \cdots H), respectively.

In RD₂ main peaks are at 1.14, 1.45, 1.76, 2.13, 2.60 and 3.93 Å, which seem to correspond to the distances C-H, $(C_1-C_2, C-O, C_2-C_3)$, C_3-Cl , $(C \cdot \cdot \cdot H, O \cdot \cdot \cdot H)$, $(C_1 \cdot \cdot \cdot C_3, C_3 \cdot \cdot \cdot O, C_2 \cdot \cdot \cdot Cl)$ and $(C_1 \cdot \cdot \cdot Cl, O \cdot \cdot \cdot Cl)$, respectively.

Making reference to the radial distribution curves and the results of ethylene oxide, molecular models for the correlation method were constructed in the ranges as follows, C_1-C_2 ; 1.44-1.56 Å, $C_1-O=C_2-O$; 1.43-1.45 Å, C_2-C_3 ; 1.50-1.58 Å, angle between C_2-C_3 and C_1C_2O plane; $50^\circ-70^\circ$.

Among them models A, B, C, D (propylene oxide) and E, F, G, H, I, J, K (epichlorohydrin) are described here (Table II and Figs. 3 and 4).

In models E, F, G and H, Cl atom is *trans* against the midpoint of C_1 -O. Models I, J, K for epichlorohydrin in which Cl atom is in different configuration from those of E, F, G and H, are also used for comparison.

Theoretical intensity curves for these models were calculated from the equation,

$$I(q) = \sum_{i,j} (Z_i Z_j / r_{ij}) \exp(-b_{ij} q^2) \sin(\pi q r_{ij} / 10)$$

where r_{ij} is the distance between atoms i and j, and Z_i is the atomic number of atom i, apart from the value 1.25 for the hydrogen atom. The coefficient b_{ij} was assumed to be 0.00016 for bonded hydrogen terms, 0.0004 for unbonded hydrogen terms, and zero for all the others.

Propylene Oxide.—From the correlation between visual and theoretical intensity curves and the values $q_{\rm calc}/q_{\rm obs}$ (Table III), model B seems to be the best among them.

The main results are as follows; $C_2-C_3=1.52\pm0.03$ Å, the angle between C_2-C_3 and C_1C_2O plane is equal to $58^{\circ}\pm5^{\circ}$. This angle is almost equal to that between C-H and C_1C_2O plane of ethylene oxide studied by microwave spectrum²).

Epichlorohydrin. — Theoretical intensity curves of models E, F, G and H which are trans in reference to Cl atom and the midpoint of C_1 —O, are in good accordance with the visual intensity curve, though the max. 6 is a little weaker than visual. Among them E and F are better than the others according to the value $q_{\rm calc}/q_{\rm obs}$ (Table IV). As the curves of H, I and J are very different from the visual, these configurations would scarcely be worthy of further consideration.

The main results are as follows; $C_2-C_3=1.52\pm0.03$ Å, the angle between C_2-C_3 and C_1C_2O plane is equal to $58^{\circ}\pm5^{\circ}$. They are

January, 1955] 61

equal to those of propylene oxide. The configuration of Cl atom is almost trans against the midpoint of C_1-O .

The author wishes to express his gratitud to the late Professor H. Oosaka and Professor A. Kotera for their kind guidance during

the course of this research. He also owes much to Mr. M. Yamaha to whom his thanks are due.

Department of Chemistry, Faculty of Science, Tokyo University of Education, Tokyo